Proximal tubule sphingosine kinase-1 has a critical role in A1 adenosine receptor-mediated renal protection from ischemia

نویسندگان

  • Sang Won Park
  • Mihwa Kim
  • Joo Yun Kim
  • Kevin M. Brown
  • Volker H. Haase
  • Vivette D. D’Agati
  • H. Thomas Lee
چکیده

Renal ischemia-reperfusion injury is a major cause of acute kidney injury. We previously found that renal A(1) adenosine receptor (A(1)AR) activation attenuated multiple cell death pathways including necrosis, apoptosis, and inflammation. Here, we tested whether induction of cytoprotective sphingosine kinase (SK)-1 and sphingosine-1-phosphate (S1P) synthesis might be the mechanism of protection. A selective A(1)AR agonist (CCPA) increased the synthesis of S1P and selectively induced SK1 in mouse kidney and HK-2 cells. This agonist failed to protect SK1-knockout but protected SK2-knockout mice against renal ischemia-reperfusion injury indicating a critical role of SK1 in A(1)AR-mediated renal protection. Inhibition of SK prevented A(1)AR-mediated defense against necrosis and apoptosis in HK-2 cells. A selective S1P(1)R antagonist (W146) and global in vivo gene knockdown of S1P(1)Rs with small interfering RNA completely abolished the renal protection provided by CCPA. Mice selectively deficient in renal proximal tubule S1P(1)Rs (S1P(1)R(f)(/)(f) PEPCK(Cre/-)) were not protected against renal ischemia-reperfusion injury by CCPA. Mechanistically, CCPA increased nuclear translocation of hypoxia-inducible factor-1α in HK-2 cells and selective hypoxia-inducible factor-1α inhibition blocked A(1)AR-mediated induction of SK1. Thus, proximal tubule SK1 has a critical role in A(1)AR-mediated protection against renal ischemia-reperfusion injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A1 adenosine receptor allosteric enhancer PD-81723 protects against renal ischemia-reperfusion injury.

Activation of A(1) adenosine receptors (ARs) protects against renal ischemia-reperfusion (I/R) injury by reducing necrosis, apoptosis, and inflammation. However, extrarenal side effects (bradycardia, hypotension, and sedation) may limit A(1)AR agonist therapy for ischemic acute kidney injury. Here, we hypothesized that an allosteric enhancer for A(1)AR (PD-81723) protects against renal I/R inju...

متن کامل

Isoflurane mediates protection from renal ischemia-reperfusion injury via sphingosine kinase and sphingosine-1-phosphate-dependent pathways.

The inhalational anesthetic isoflurane has been shown to protect against renal ischemia-reperfusion (IR) injury. Previous studies demonstrated that isoflurane modulates sphingolipid metabolism in renal proximal tubule cells. We sought to determine whether isoflurane stimulates sphingosine kinase (SK) activity and synthesis of sphingosine-1-phosphate (S1P) in renal proximal tubule cells to media...

متن کامل

Activation of sphingosine-1-phosphate 1 receptor in the proximal tubule protects against ischemia-reperfusion injury.

Agonists of the sphingosine-1-phosphate receptor (S1PR) attenuate kidney ischemia-reperfusion injury (IRI). Previous studies suggested that S1P1R-induced lymphopenia mediates this protective effect, but lymphocyte-independent mechanisms could also contribute. Here, we investigated the effects of S1PR agonists on kidney IRI in mice that lack T and B lymphocytes (Rag-1 knockout mice). Administrat...

متن کامل

Preconditioning and adenosine protect human proximal tubule cells in an in vitro model of ischemic injury.

Renal ischemic reperfusion injury results in unacceptably high mortality and morbidity during the perioperative period. It has been recently demonstrated that ischemic preconditioning or adenosine receptor modulations attenuate renal ischemic reperfusion injury in vivo. An in vitro model of ischemic renal injury was used in cultured human proximal tubule (HK-2) cells to further elucidate the pr...

متن کامل

Modulation of adenosine receptor expression in the proximal tubule: a novel adaptive mechanism to regulate renal salt and water metabolism.

ABOUT 180 LITERS OF FILTRATE are produced by the human kidneys every day, with more than 99% of the filtered salt and water being subsequently reabsorbed along the nephron. In view of this high level of renal filtration, even slight alterations in the balance between filtration and reabsorption will result in potentially life-threatening derangements of electrolyte and volume balance. Consequen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2012